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Abstract

Physical applications are an integral part of diagnostic and therapeutic procedures and modern medicine
would be unthinkable without them. With physical plasma, a technology that has long been used
for technical purposes has found its way into medical applications. The use of cold physical plasmas in
oncological therapy appears to be of particular interest. First investigations indicate a variety of anticancer
properties such as antiproliferative, antimetatstatic, and proapoptotic effects on tumor cells. Especially
in combination with classical anti-cancer strategies such as surgical resection and chemotherapy, cold
plasma treatment could provide an innovative and promising option for the oncology of the future.
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Introduction

In medical diagnostics, complex physical techniques are state of the art and everyday clinical
practice would be unthinkable without them. But also in the field of therapeutic interventions there are
a number of physical procedures. For example, ionizing radiation is used in oncology and non-ionizing
radiation in dermatological (UV light) and photodynamic therapies (laser). Similarly, electrosurgical
and laser procedures are well established in surgery. The basis of all these methods is the interaction
of physical noxious agents with biological tissue, which consequently leads to the desired medical
effects. Currently, another physical procedure is being introduced for clinical application, treatment
with physical plasma. This is a highly reactive, ionized gas consisting of electrically neutral particles
including radicals, charged particles, free electrons and electromagnetic radiation.

Thermal and Non-thermal Physical Plasma

Physical plasma is present in nature (celestial bodies, lightning) and has been used technically
for a long time (energy-saving lamps, plasma screens, surface engineering processes) [1]. There are
different technical principles for the production of plasma. The dielectric barrier discharge and the
plasma jet. In addition, various carrier gases such as argon, helium, nitrogen, heliox (helium-oxygen
mixture) and air can be used to generate plasma [2]. The plasmas used in technical applications are
usually thermal (hot) plasmas with temperatures ranging from slightly below 100°C to over 1,000°C.
Furthermore, these technical plasmas are commonly used under defined pressure conditions well
above (high-pressure plasma) or below (low-pressure plasma) atmospheric pressure [2]. For medical
applications, however, only physical plasmas under atmospheric pressure can be used, since neither
the entire patient nor individual body parts can be exposed to extreme pressure conditions. These
plasmas are called atmospheric pressure plasmas and have been used in medicine for some time. Hot
atmospheric pressure plasmas with temperatures in the range of about 100°C are used in surgical
procedures for coagulation and obliteration of (malignant) tissue areas [3-6]. However, the thermal
properties of the plasmas applied are of importance here; specific biological effects are not achieved at
hot atmospheric pressure plasmas.

The field of plasma medicine made a great leap forward with the technical development of devices
that produce non-thermal (cold) plasmas whose temperature is only slightly above body temperature.
Such atmospheric pressure plasma devices produce a cold atmospheric plasma (CAP) and can be
applied to patients without thermal irritation. This is achieved because the plasma is generated in
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Figure 1: Mode of action of an oncological therapy with cold physical plasma using an argon plasma jet. The energization of the carrier gas argon
by a high-frequency generator leads to the excitation of the argon atoms and a transfer of energy to atoms and molecules of the ambient air. The
resulting high levels of reactive oxygen and nitrogen species are primarily responsible for the biological effect of cold plasmas. They can lead to
disturbances of the cytoplasmic membrane, mitochondria, cytoskeleton, and metabolism. Furthermore, cellular stress cascades are induced, which
correlate with various cell responses such as growth retardation, apoptosis, motility reduction, resensitization, and release of regulatory factors. By
releasing cellular molecules, CAP can also indirectly affect cells in the tumor microenvironment, resulting in modulation of the immune system,

inhibition of vascularization or antibiotic effects.

a high-frequency alternating field and thus the time is too short
to transfer the kinetic energy of accelerated electrons to atoms by
collision [7].

Biological Reactivity of Cold Physical Plasma

At the interface of CAP and ambient atmosphere, N, O,
and H,O molecules from the ambient air are cleaved, ionized or
transformed into excited states. These reactive species react further.
Concentration and composition of this mixture of reactive oxygen
species (ROS) and reactive nitrogen species (RNS) are therefore
variable and change depending on the (reaction) time and localization
in the CAP flame. For example, 87 reaction pathways have been
described how NO, can be formed from primary ROS alone [8,9].

ROS are the crucial biologically active factors in the application
of CAP and cause a wide variety of cellular responses (Figure 1).
Due to their thermodynamic properties, ROS are more reactive
than molecular oxygen [10]. Oxygen radicals react in one-electron
reactions, which take place much faster than more complex multi-
stage redox reactions. Especially radical species like singlet oxygen
("O,), hyperoxide anion radicals (O,*"), hydroxyl radicals (OH®),
and hydroperoxides (R-OOH) are very unstable and therefore very
short-lived particles. Non-radical oxidants, such as hypochlorous
acid (HOCI) or hydrogen peroxide (H,0,), are relatively long-lived
[11].

The cellular detoxification system for ROS consists of enzymatic
and non-enzymatic radical scavengers and antioxidants as well
as DNA repair mechanisms [12]. Antioxidative enzymes act by
breaking down oxygen radicals. Catalases catalyze the conversion of
H,0, to oxygen (O,) and water (H,0) [13], peroxiredoxins catalyze
the reduction of hydroperoxides [14], and sulfhydryl antioxidants
such as glutathione contain a cysteine sulfhydryl group that can fill
the free electron gap of radical species by giving off an electron [15].

Subsequently, the gluthation is oxidized to glutathione disulfide. The
steady state of the cellular redox system is a highly dynamic system
and ensures redox homeostasis [10].

In low physiological concentrations, ROS are intracellular
signal mediators and can control signaling cascades through
posttranslational chemical modifications of signaling proteins,
for example in cell differentiation [10,16]. However, high ROS
concentrations damage the cell (oxidative stress) [17]. If the cellular
ROS detoxification system is overloaded, reactions with cellular
structures such as DNA, proteins, or lipids occur [18], which may
even lead to the induction of apoptosis [18,19].

Mainly due to these biological ROS effects, CAP has pronounced
antimicrobial and anti-inflammatory properties. CAP treatment
has therefore long been part of the therapy of wound healing
disorders and chronic wounds [20]. In CAP treatment of chronic
wounds, the bacterial count in the wound is reduced and wound
healing is improved. The reduction of the microbial load applies
to a large number of different microorganisms including multi-
resistant pathogens. In addition, treatment with CAP does not lead
to the allergic reactions and resistances that regularly occur under
antibiotics [21]. Since the effective components of CAP are highly
reactive chemical particles (ROS, RNS), genotoxic effects can be
assumed. However, numerous studies have been conducted on the
mutagenicity of CAP in eukaryotic cells and there is no evidence that
CAP treatment induces mutations [22,23].

Immunological Reactivity of Cold Physical Plasma

Very limited knowledge is available about the impact of CAP on
immunological mechanisms. This seems even more relevant, because
especially the latest immunotherapeutic strategies in oncology
are very promising. First immunological studies have shown
that CAP treatment can modulate the expression and release of
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immunologically active factors (chemokines, cytokines, interleukins,
growth factors, TNF superfamily members) in tumor cells [24-
27]. Subsequently, activation of myeolide cells, differentiation into
cytotoxic T cells, and re-infiltration of cytotoxic T cells into new
tumor tissue was observed [28,29]. It can therefore be assumed that
CAP treatment not only leads to cell death and growth retardation of
tumor cells, but also provides tumor biological positive effects. This
might lead to both immunogenic cancer cell death and anticancer
immunity [30].

Cold Physical Plasma in Oncological Therapy - Plasma
Oncology

Another innovative and very promising application is the use
of CAP in oncological therapy [31,32]. Various studies show the
antiproliferative and antimetatstatic effects of CAP on different
cancer cell lines, including tumor cells of bone, skin, breast, ovary,
and lung [33-37]. Furthermore, data show that, in addition to
the intraoperative application of CAP, a combination with local
chemotherapy is significantly more effective than the individual
therapeutic procedures [38]. This could be used in particular to
effectively inactivate chemoresistant tumors. At the molecular
level, numerous effects have been described so far that contribute
to the anti-oncogenic potential of CAP. These include disruption
of membrane integrity and metabolism, manipulation of cellular
(redox) signaling cascades, inhibition of angiogenesis, and induction

of apoptosis [39-42].

Systematic clinical studies on the use of CAP in the treatment of
solid tumors are still pending. However, the available experimental
data indicate beyond doubt that the use of CAP represents an
excellent complement to existing therapeutic procedures. First and
foremost, an intraoperative use of CAP would be conceivable. After
surgical resection of the tumor, this could be used to inactivate areas
that are difficult to reach. Furthermore, CAP treatment of critical
tumor areas in the immediate proximity of nerves or adjacent organs
would be advantageous. Since ROS and RNS react in the tissue, CAP
only has a local effect. This additionally reduces the risk of systemic
effects such as those related to chemotherapeutic agents. Due to the
increased permeability of the membrane, the combination of CAP
treatment with a local administration of cytostatic drugs would also
make sense. This would allow already resistant tumor cells to be
sensitized. In addition, a dose reduction of the chemotherapeutic
agent would be possible, which in turn would reduce side effects.
Last but not least, due to its antimicrobial and wound healing
promoting effects, an intraoperative CAP treatment would also
contribute to reducing postoperative complications. All these
applications concern open surgery. Currently, however, work is also
in progress on CAP devices that can be used endoscopically, which
would again significantly expand the application horizon. There is
therefore a strong indication that in the tumor surgery of the future,
treatment with CAP will also contribute to anti-oncogenic therapy.
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